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Abstract: This paper proposes the application of ant coloptymization (ACO) to solve a static transmissiopansion planning
(STEP) problem based on a DC power flow model. Tlagonobjective is to minimize the investment cobtransmission lines
added to an existing network in order to supply fhiecasted load as economically as possible abjecuto many system
constraints i.e. the power balance, the generagiqnirements, line connections and thermal linfitee Garver's six-buses system, is
analyzed to appraise the feasibility of the ACO. &xperimental results obtained by ACO are compavethdse obtained by the
conventional approaches of the Genetic Algorithmi\YGand the Tabu Search (TS) algorithm. The ressiisw that the ACO
method outperforms other methods in convergenceactaistic and computational efficiency.
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1. Introduction

Transmission expansion planning (TEP) is an immbrta
issue in electrical power system planning. Theqgipie of TEP
is to find an optimal configuration to be consistevith the
electricity demand and a generation planning schenseting
the requirement of delivering sufficient electngitsafely and
economically over the planning period. For thatsceg TEP
addresses an optimization problem in power systétodels of
TEP can be categorized as static or dynamic aacuprii the
treatment of the study period. Static planning Iags single
horizontal planning and answers the questionateit type of

economic dispatch (ED) or optimal power flow (OP%ince the
TEP problem is formulated as an integer programrmptnization
(discrete variable), the ACO method applies pariidylwell to
this problem.

This paper introduces the application of ACO to @
power flow-based model for solving the static THRe results
obtained by ACO are compared to those obtained byerdional
approaches i.e. Genetic Algorithm (GA) and Tabur&edTS)
methods in term of solution quality, convergencarahteristic
and computational efficiency.

The remaining part of this paper is organized #eVis:
Section 2 formulates TEP problem based on a DC ftmaxd

and where new equipment should be installed in a way thatmodel. Section 3 elaborates the principle of the Adigorithm.

minimizes the installation and operational costgndmic, or
multiple stage planning, is a derived generalizatimt considers
the separation of the planning horizon into sevetagjes and
answers the questions what, where, andwhen to install the
network additions [1]. This paper focuses only tatis planning.

In the past decade, many researchers proposedisario

techniques to solve both static and dynamic plappimblems.
In the literatures, mathematical models appliedTEP were
classified exclusively by Latorre et al. [2]. A stical Linear
Programming (LP) algorithm to solve static TEP wasposed
by Garver [3] and Villasana et dH4]. For dynamic planning,
Escobar et al. [5] proposed an efficient genetipathm (GA)
to solve the problem of multistage and coordinate®. Many
artificial intelligence (Al) methods have been agglifor solving
TEP problems. These methods include Simulated Ange@A)
[6], Genetic Algorithm (GA) [7], Tabu Search (TS)[Particle
Swarm Optimization (PSO) [9] and Differential Eviidin (DE)
algorithm [10]. Only recently, Ant Colony Optimizati (ACO)
has become a candidate for many potential appiicsti The
ACO algorithm is inspired by the behavior of reats and was
first introduced by Marco Dorigo et al. to solveetfiiraveling
Salesman Problem (TSP) [11], and was later applethe
asymmetric TSP [12], the Quadratic Assignment FRmQAP)
[13] and the Vehicle Routing Problem (VRP) [14] cBatly, ACO
has been adapted to some network problems e.gr p@irédbution
expansion planning [15], optimal placement of shés and
protective devices in electric power distributioystems [16]
and communication network design [17].

However, nothing in the literatures mentions ariegjion
of ACO to TEP in the power transmission domaiiis Envisaged
that the ACO method applies very well to searcfanghe shortest
path and to solving discrete problems such asaamtmitment
(UC) and transmission expansion models. On the agntthe
method does not apply well for continuous problesush as

Section 4 presents detailed procedures for the Agifdoach to
solving the static TEP problem. Section 5 giveasecstudy and
compares the results with those of the traditiom&thods.
Section 6 presents the conclusion of the study.

2. Methodology
2.1 Problem formulation

2.1.1 Objective Function of TEP

The objective function of TEP is to minimize thea@stment
cost of transmission lines subjected to physical anonomic
constraints. In this paper, the classical DC pouev fnodel is
used for static TEP, which can be formulated a% [18

minimize C; = > ¢;n, 6
i,jeQ
where
CT is the total investment cost of transmission lines.

Cj isthe cost of a circuit to be added to the rightvay i-j.

nij is the number of circuits added to the right-of-viry
is the set of all rights-of-waiy;j.

2.1.2 Constraints

2.1.2.1 Equality constraints.
According to the set of equations determined bghGff's
laws (KCL, KVL), the power flows in the system axpressed as:

(@) Power Balance
This constraint represents the conservation of pome
each node.
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Based on the above assumptions, the DC load flavbeabtained
by the following equation.

P :i(aj 6,-6,) ;i=123..N

where

©)

is the branch-node incidence transposed matrix.
is the real power flow injection at bus
is generation injection of nodes (generation in ks

U S0 Un

is the load demand vector in all networks nodes.

B is the susceptance matrix of the existing and added
" lines in the network
N is the total number of buses in the system.

(b) Kirchoff's voltage law (KVL)
This law is the conservation of energy in the eglgmt
DC network Subject to constraints that are nonlinear

F?j_hj(n(j)"'r\j)(ai_ej)zo 4)
where
P, is the power flow in branch — | .
h,- is the susceptance in the right-of-wigy
0 . . . . ..
n; is the number of circuits in the original base syst
6,.6, s the phase angle of the terminal Huand | .

2.1.2.2 Inequality constraints

The inequality constraints reflect the limits orygical
and economic devices in the power system as weleatimits
created to ensure system security.

(@) Transmission capacity limit or power flow limit.

These constraints can represent the maximum pofver
the transmission line that can be carried basethemmal and
dynamic stability considerations.

Rl = (nf +ny)- R
where
pmax is the maximum branch power flow in the right-ofywid.
i

®)

(b) Power generating limit.

2.2 Ant colony optimization

Inspired by the collective behavior of a real anibay,
Marco Dorigo first introduced the Ant System (A8)his Ph.D.
thesis in 1992, and published more about it in .[IBhe
characteristics of an artificial ant colony inclyasitive feedback,
distributed computation, and the use of a constreiajreedy
heuristic. Positive feedback accounts for rapi¢alisry of good
solutions, distributed computation avoids prematar@vergence,
and the greedy heuristic helps to find acceptatilations in the
early stages of the search process. In order tmdsimate the
AS approach, the authors applied this approachecclkassical
TSP, asymmetric TSP, Quadratic Assignment Probl@#P(),
Job-Shop Scheduling Problem (JSSP) and Vehiclarigdatoblem
(VRP). The AS shows very good results in each eg@rea. More
recently, Marco Dorig@andGambardelld11] have been working
on extended versions of the AS paradigm. ACO is @hnthe
extensions and has been applied to both symmattiasymmetric
TSP with excellent results in literature. The aygtesm approach
has also been applied successfully to other cortdriah
optimization problems, such as the classical TSymanetric
TSP, quadratic assignment problem and the veloigténg problem.

ACO is an algorithm which was inspired by the bébrav
of real ants [11]. Entomologists have studied hdndoanimals,
such as ants, are capable of finding the shortast fpom food
sources to the nest without using visual cues. nelso capable
of adapting themselves to a changing environmeartekample,
finding a new shortest path once the old one iBnger feasible
due to a new obstacle. The studies by entomologst=al that
such capabilities are essentially due to commungatformation
about the paths among individuals to decide thé 8iesction.
Ants deposit a certain amount of pheromones whlking, and
each ant probabilistically prefers to follow a difen rich in
pheromones rather than a poorer one.

Fig.1 illustrates the searching behavior of ancatbny
In Fig.1(a) ants are on a straight line that cotnadood source
&0 their nest. An ant will deposit pheromone whilalking and
it probabilistically prefers to follow a directiaich in pheromone.
In Fig. 1(b), the ants are obstructed and cannatirae in a
straight line. Therefore, they have to choose hetviarning right
or left. Half of the ants choose to turn right ahd other half
choose to turn left. In Fig. 1(c), ants choosirgghorter path will
more rapidly reconstitute the interrupted pheromtraé than
those choosing the longer route. Thus, the shqgrégh will
receive a greater amount of pheromones per timeamd, so,
lager numbers of ants will choose the shorter patre to this

These constraints give the maximum and minimumpgsitive feedback, eventually, all the ants wilboke the shorter

generating capacities, outside of which it is neasible to
generate power due to technical or economic reasons

min < < pmar
Pg - Pg - Pg
where

6

min
Pg is the minimum active power output generated athous
Pma>

s is the maximum active power output generated atkous
(c) Right-of-way limit.

For transmission planning, planners need to knoasv th
exact location and capacity of the new requiredslifTherefore,
this constraint has to be included for considenaticthe planning.
Mathematically, this constraint defines the linedtion and the
maximum number of lines that can be installed ispacified
location. It is represented as follow:

0<n, <ni™®
where
max s the maximum number of circuits that can be adde

T in the right-of-wayi-j.

()

path as shown in Fig. 1(d). Each ant moves at apedely the
same speed and deposits a pheromone trail at apyateky the
same rate. The time consumed on the longer sida obstacle
is greater than the shorter one, making the phementaail

accumulate more quickly on the shorter side. Anéfep higher
pheromone trail levels and will cause the accurnanato build

up faster on the shorter route.

2.3 Implementation of ACO for TEP

This section elaborates an application of the ACO
algorithm to solve TEP. First, the model has tddsenulated as
in Fig. 1 with routes between a nest and food soufor example,
in a system consisting of 3 buses and 3 branclze$, leranch
can have a number of possible lines and possiptgsriof-way
as shown in Fig. 2. This network can be graphicatyslated
as the radial routes between the nest and the $oodce as
shown in Fig. 3. This model reveals that the trassion system
topology can be constructed by randomly selectingraber of
qine(s) for each branch, analogous to the ant'serbetween the
nest and the food source.
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Figure 1. Behavior of ants.

(a) Real ants follow a path between nest and foodce.

(b) An obstacle appears on the path: ants choosthehto turn left or
right with equal probability.

(c) Pheromone is deposited more quickly on thetshpath.

(d) All ants have chosen the shorter path.

=

Nest

Figure 3. A simulation model of the routes of ants betwden t

|12 |13 23

nest and food source.

In general, the procedure of an ACO algorithm can be
described as follows: a1 number of ants are initially positioned
at the nest. Each ant will choose a possible raste solution.
In fact, each ant builds a feasible solution (chléetour) by
repeatedly applying a stochastic greedy searcled;ahe state
transition rule. Once all ants have terminatedrtheurs, the
following steps are performed: the amount of phenoenis
modified by applying the global updating rule [14nts are
guided, in building their tours by both heuristicdgpheromone
information. Naturally, a link with a high amourftgheromone
is a desirable choice. The pheromone updating arkeslesigned
so that they tend to give more pheromones to tigesdvhich
should be visited by ants. A flowchart of the prepd TEP-
ACO and its algorithm is shown in Fig. 4. The detaif ACO

algorithm can be described in the following steps.

Food

Set NC=0, z',-,-(O) =10, Ar,-, =0
i |

v

Construct /mn feasible solutions

v

Calculate DC Power Flow

2

Calculate Objective Function

Check constraints i.e thermal limit,
generation limit, possible right-of-
way etc.

L 2

I Find the best solution I

Y
NC=NC+1

<>

Yes

Figure 4. Flow chart of TEP-ACO algorithm.

Step 1 Initialization
SetNC =0 /* NC: Cycle Counter */

For every combination i, j )
Set an initial valuer ©0) =17, andAz'ij =0

End

Step 2 Construct feasible solutions
For k=1 to m/* m: number of ants */
For i=1 to n /* n: number of branches*/
Choose a level of connectigvith transition probability
givenby Eq. (10).
End
Calculate Objective Function Eq. (1) and
Check Constraints Eq. (2-7)
End
Update the best solution.

Step 3 Global updating rule
For every combination, ] )
Fork=1tom
Find Az-i:f according to Eq. (12)

End
Update A Ty according to Eq. (11).

End
Update the trail values accordinglg. (10).
Update the transition probabiligccording to Eqg. (8).
Step 4 Next search
Set NC = NC+1
For every combinationl(, ] )
Az; =0
End
Step 5 Termination
If (NC < NGna
Then
Gotostep?2 Else
Print the best feasible solution
Stop
End

Copyright @ 2010 By Journal of Sustainable Energy Environment

73



Journal of Sustainable Energy & Environment 1 (3011076

(A) State transition rule
The state transition rule of the ant colony is giie Eq.

(8). This equation represents the probability #ratintk selects
a link that connects bus to busj :

[Tij (t)]a [’7ij (t)]ﬂ

k
P; (t)= m (8)
5
Y @ [ ()]
k=1
where
Tij  is the pheromone intensity.
17 s the heuristic information between nddend nodej .
a is the relative importance of the trail.

is the relative importance of the heuristic infatman.

The problem specific heuristic information is:

1
my =— ©
where
C. is the associated cost of the transmission lines.

ij
Therefore, the level of line with less cost has r@atger
probability of being chosen.

(B) Global updating rule

During the construction of the solution, there s n
guarantee that an ant will construct a feasiblatiol that obeys
the reliability constraint. The pheromone updatiagedies an
infeasible solution. The amount of deposited phenoes is set
to a high value if the generated solution is fdasimd to a low
value if it is infeasible. Therefore, this valuepdads on the
solution quality. Infeasibility can be handled bgs@ning a
penalty in proportion to the amount of reliabilitiolations. In
the case of a feasible solution, an additional pemaintroduced
to improve its quality.

Following the above remarks, the trail intensity is
updated as follows:

r;(t)=Q1-p) 7; t-D+ Az, (10)
where
P is a coefficient such tha{l— p) represents the
evaporation of a trail.
and Arij is:
= k
Ar; =Y At (11)
k=1
where
m is the number of ants.
and Arilj( is given by:
H th
Ark= 1 ifk an.t chooses pat (12)
0 otherwise

3. Results and Discussion

The proposed TEP-ACO method was tested on the

well-known Garver's 6-bus test system shown in FEigThe
Garver system has 6 buses and 15 candidate brafdtetotal
demand is 760 MW and the relevant data are givérables 1
and 2. The maximum possible number of added liright{of-
way limit) per branch equals four.

240

G;=

6
I Ge =545

160
Figure 5. Initial configuration of Garver’s 6-bus network.

Table 1. Generation and load data for Garver’s 6-bus system

Bus Generation (MW) Demand (MW)
Max. Level

1 150 50 80

2 - - 240

3 360 165 40

4 - - 160

5 - - 240

6 600 545 -

Table 2.Branch data for Garver's 6-bus system.

Fr(zg)To ni? rpu) | x@euw Rimax (x 1Co?thS$)
1-2 1 0.10 0.40 100 40
1-3 0 0.09 0.38 100 38
14 1 0.15 0.60 80 60
15 1 0.05 0.20 100 20
16 0 0.17 0.68 70 68
2-3 1 0.05 0.20 100 20
2-4 1 0.10 0.40 100 40
25 0 0.08 0.31 100 31
2-6 0 | 001875 0.30 100 30
34 0 0.15 0.59 82 59
35 1 0.25 0.20 100 20
36 0 0.12 0.48 100 48
45 0 0.16 0.63 75 63
46 0 | 00375| 030 100 30
5-6 0 0.15 0.61 78 61

The optimal planning solution for Garver's systesn i
N, =4, N,z =1, and N,s =2 as shown in Fig. 6. The

simulation was made for comparison to the GA and TS
approaches. All methods were performed for 30griahder the
same evaluation function and individual definitiom,order to
compare their solution quality, convergence charéstic, and
computational efficiency. The programs were impleted by
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MatLab® languages on an InfelCore2 Duo 1.66 GHz Laptop

with 2 GB RAM under Windows XP. The statistical resul
such as the investment cost, standard deviatiampatational
time and percentage of approaching near optimaitisol, are
shown in Table 3.

240 Gi=50

6 l_4
IG5=545

160
Figure 6. Optimal plan of Garver’s 6-bus system.

Table 3. Results of Garver's 6-bus Test System.

Figure 8. Distributions of investment costs of the threehnods.
4. Conclusion

This paper proposes a novel approach for adopting
and ACO search algorithm to solve a TEP problem waaks
corporately with the DC power flow model. The progods
method with Garver's 6-bus test system which gigegood
performance in comparison to the conventional GAl dis
methods in terms of less calculation time, betteality of
solution and more stable-convergence characteristi

Acknowledgement

Investment Cost % Get Used ) . .
Methods nij 10° US$) SD | Optimum Time Financial supported by the Thailand Research Fund
Worst | Average | Best Cost No. MRG4880075 is greatly appreciated and acknoveddg
GA 7 368 227 2000 41.2F 53.333  46.686
TS 7| 244 218 200 2656 86.776  36.983 References
ACO 7 200 200 200 0.00 100 17.620

Investment Cost (x103 US$)

SD = Standard Deviation.

Fig.7. shows the comparative convergence charsiitsri
of the Ant Colony optimization (ACO), Genetic Algiim (GA),
and Tabu Search (TS). Fig.8 shows the distributiotines of
the best solution of each trial. Almost all investrh costs
obtained by the ACO method are lower. This veriftest the
ACO method has a better quality of solution.

500

450 -

aoof [*: 4

300 -

250 -

200 -

150 I I I I
0 5 10 15 20 25 30 35 40 45 50

Number of Iterations

[1] Abdelaziz AR, Genetic algorithm-based powensmission
expansion planning7th IEEE Inter. Conf., Electronics,
Circuits Syst.2 (2000) 642-645.

[2] Latorre G, Cruz RD, Areiza JM, Villegas A, Clasgsition
of publications and models on transmission expansio
planning,|EEE Trans., Power Syst, 18 (2003) 938-946.

[3] Garver LL, Transmission network estimation wgsiimear
programming) EEE Trans,, Power App. Syst. PAS-89 (1970)
1688-1697.

[4] Villasana R, Garver LL, Salon SJ, Transmissi@iwork
planning using linear programmindsEE Trans. Power App.
Syst., PAS-104 (1985) 349-356.

[5] Escobar AH, Gallego RA, Romero R, Multistage and
coordinated planning of the expansion of transmoissi
systems|EEE Trans., Power Syst. 19 (2004) 735-744.

[6] Romero R, Gallego RA, Monticelli A, Transmissigystem
expansion planning by simulated annealiieEE Trans.,
Power Syst. 11 (1996) 364-369.

[7] Gallego RA, Monticelli A, and Romero R, Transmssi
system expansion planning by an extended gengtcitaim,
Proc. Inst. Elect. Eng., Gen., Transm,, Distrib. 145 (1998)
329-335.

[8] Gallego RA, Romero R, Monticelli AJ, Tabu séaatgorithm
for network synthesidEEE Trans., Power Syst. 15 (2000)
490-495.

Figure 7. Convergence characteristics of the three methods. [9] Kavitha D, Swarup KS, Transmission expansioanping

using LP-based particle swarm optimizatid&EE2006,
Power India Conf. (2006) 6.

Copyright @ 2010 By Journal of Sustainable Energy Environment 75



Journal of Sustainable Energy & Environment 1 (3011076

[10] Sum-Im T, Taylor GA, Irving MR, Song YH, Diffential for the planning of primary distribution circuit$EEE
evolution algorithm for static and multistage tnaission Trans., Power Syst. 19 (2004) 996-1004.
expansion plannindgroc. Ing. Elect. Techno., Gen., Transm,, [16] Tippachon W, Rerkpreedapong D, Multiobjectivatimal
Distrib. 3 (2009) 365-384. placement of switches and protective devices ictede

[11] Dorigo M, Gambardella LM, Ant colony system: a power distribution systems using ant colony optatian,
cooperative learning approach to the traveling ssadm Elec. Power Syst. Res. 79 (2009) 1171-1178.
problem,|EEE Trans., Evolutionary Computation 1 (1997)  [17] Watcharasitthiwat K, Wardkein P, Reliability topization
53-66. of topology communication network design using ant

[12] Gambardella LM, Dorigo M, Solving symmetric can colony optimization, Reliability Engineering & System
asymmetric TSPs by ant coloni€spc. |EEE Inter. Conf., Safety 35 (2009) 1-18.

Evolutionary Computation (1996)622-627. [18] Romero R, Monticelli A, Garcia A, Haffner Sedt systems

[13] Maniezzo V, Colorni A, The ant system applied the and mathematical models for transmission netwopamsion
quadratic assignment probledEEE Trans., Knowledge planning,Proc. Ingt. Elect. Techno., Gen., Transm., Distrib.
and Data Eng. 11 (1999) 769-778. 149 (2002) 27-36.

[14] Bell JE, McMullen PR, Ant colony optimizatidechniques  [19] Dorigo M, Maniezzo V, Colorni A, Ant system:
for the vehicle routing problemAdvanced Engineering optimization by a colony of cooperating agent&EEE
Informatics 18 (2004) 41-48. Trans.,, Syst., Man, and Cybernetics, Part B: Cybernetics

[15] Gomez JF, Khodr HM, De Oliveira PM, Ocque Lusta 26 (1996) 29-41.

JM, Villasana R, Urdaneta AJ, Ant colony systenoethm

76 Copyright @ 2010 By Journal of Sustainable Energy Environment





